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Monte Carlo Simulation of the Midcourse Guidance

for Lunar Flights

LioNeL J. SkipMORE* AND Pavurn A. Penzof
Space Technology Laboratories Inc., Los Angeles, Calif.

A detailed description and numerical results of a Monte Carlo simulation that was set up
to determine the fuel requirements and final accuracy of the midcourse phase of the lunar
missions is presented. The example considered applies two midcourse corrections to null the
errors in three terminal variables. Linear perturbation theory was assumed to be valid. A
proposed simulation for missions in which the burnout errors are so large that nonlinear effects
are important also is described. The aspects of this simulation which are presented are the
basic system for the fuel and accuracy analysis, the technique used for the trajectory compu-
tations, the determination of the minimum velocity increment (if applicable), computation
of midcourse correction errors, and estimated machine time per run. Cumulative probability
functions are computed in two simple cases by both the direct-integration approach and the
Monte Carlo method. A discussion of the statistical aspects of the Monte Carlo technique

also is included.

I. Introduction

N most of the midcourse guidance analyses that have been

performed thus far, the procedure has been to assume a
correction logic and then to determine how much fuel is
necessary to obtain a high probability of no fuel depletion.
An error analysis then is performed to determine the proba-
bility of mission success. In both parts of the analysis
just described, the final result usually is obtained by the
numerical integration of a multivariate probability-density
function over a multidimensional space. Computer pro-
grams have been set up which rapidly handle integrals in-
volving one to four dimensions. However, in some of the
problems that need solution, the dimensionality is six or
more. For example, if it is desired to perform an error
analysis on a one-correction attitude-controlled spacecraft
that corrects errors in three terminal variables, a six-dimen-
sional Gaussian integral is necessary, since the equations
that relate the final errors to midcourse errors involve prod-
ucts of Gaussian random variables.t When multiple cor-
rections are made or nonlinearities become important, the
dimensionality can increase easily above six.

The Monte Carlo technique can be used to circumvent the
difficulties involved in integrating over multidimensional
spaces. The basic idea involved is that of simulating the
midcourse phase of the mission many times using randomly
generated samples of the system errors and then performing
a statistical analysis of the data obtained. For this tech-
nique to give meaningful results, a large number of runs are
necessary (of the order of 1000). It is one of the purposes of
the paper to show that a large number of runs can be made
with a reasonable amount of machine time.

In this paper a detailed description of a Monte Carlo
simulation that was set up at Space Technology Laboratories
to determine the fuel requirements and final accuracy of the
midcourse phase of lunar missions is given. The midecourse
phase consisted of two attitude-controlled corrections to
null the indicated errors in three controlled variables. How
this simulation could be modified to handle in an optimum
manner problems where only two terminal variables are con-
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trolled is discussed in Appendix C. It was assumed that
linear perturbation theory was valid.

A problem of future interest is the simulation of missions
in which the burnout errors are so large that nonlinear effects
are important. A proposed simulation for handling the
nonlinear problem also is discussed. The aspects of this
simulation which are presented are the basic system for the
fuel and accuracy analysis, the technique used for the tra-
jectory computations, the determination of the minimum
velocity increment (if applicable), computation of midcourse
correction errors, and estimated machine time per run.

In order to obtain some quantitative feeling as to how ac-
curate the Monte Carlo technique is, cumulative probability
functions are computed in two simple cases by both the direct-
integration approach and the Monte Carlo method.

II. Monte Carlo Simulation of a
Two-Correction Mission

A. Real-Time Correction Logic

In this section a nonoptimum but reasonable real-time
logic is described for the execution of the midcourse guidance
when two corrections are used to null the errors in three
terminal variables. An earth-to-moon flight where 66 =
(851, 8be, 6V )$ is nulled (see Fig. 1) is used as an example,
but the technique applies equally well to other three-terminal-
variable/two-correction missions. It will be apparent also
how the technique can be extended to n-correction missions
where three terminal variables are controlled.

After injection from an earth parking orbit, the spacecraft
is tracked, and a least-squares estimate of the perturbation
in the nominall spacecraft state vector is obtained from (see
Ref. 1 and Appendix E)

AX = (Ay7Ao + Aso™) H{(4e740) X )
[(AoTAo) 1A Afio] + ABO_leXBO}
(AoTAq + Apo™) AT Ao + Azo~! AX po] (1)

where Agq is the column vector

I

Ag‘) = [(yimeasured - yinominal)/ai] (2)
§ (by, by) are coordinates in the impact parameter plane, and
V ., is the velocity at infinity as would be seen by a moon-based
observer and is perpendicular to the impact parameter plane.
I “Nominal”’ referred to here means the state vector that would
be obtained if the pre-injection tracking and the injection
maneuver were perfect.
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Fig.1 Impact-parameter plane coordinates

The y.; referred to in (2) is the ¢th radar observation, and o2
is the a priori variance of that measurement. The A, matrix
represents the weighted regression coefficients,

Ao = [(1/00)(0y:/0z;)] ®3)

and Apois the covariance matrix of the error in the state
vector caused by the preinjection tracking and the injection
maneuver. The partial derivatives of (3) are evaluated
with respect to the “nominal”’ after the programmed maneu-
ver. The best estimate of the error in the maneuver is

A)? so =10 (4)
and the covariance matrix of the tracking error is

E[AXAXT™] = (AgTAo + Azo™) Y AT A, +
ABO_lABO(ABO_l)T} [(AoTAs + Ao~ 17

= (AgTAy + Apo ™) H(AeT4o + Azo™) X (5)
(A¢TAo + Apo™H) 1

= (4gT4o + Ao !

Let ®4p (f7, t) be the matrix that transforms perturba-
tions in the state vector at time ¢ to perturbations in the
terminal variables. Then the covariance matrix of un-
corrected ““miss” in the impact parameter plane is ®ap(ts,
to)Azo PapT(ts, L), and the convariance matrix of tracking
uncertainty at time ¢ is Pap(ty, £ (AoTAo + Apo ™)1
DPapT(ts, £). Let B(t) be a (3 X 3) matrix that transforms
changes in the velocity coordinates AV, = (A#,, Ay, Az) to
changes in the impact parameter plane coordinates. There-
fore, under the logic that all of the indicated error will be re-
moved in a correction, the velocity required is

AV = —B () [Abzo + Abrp(t)] (6)

where Abgo is the true error, and Abrr(f) is the tracking
error. These two components cannot be separated, since
only their sum can be observed. However, Abrz(t) is de-
creasing with time because of the “smoothing” effect of the
tracking network.

The choice of the time to make the first correction is based
on accuracy considerations. The velocity error in the cor-
rection can be expressed as follows:

8V. = QAT /06, 66, + (0AV./op)éd. +
AV 4+ k(AV/AVY (7)

where 66, and 8¢, are attitude orientation errors, k, is the
accelerometer error, and k, is the thrust shutdown uncer-
tainty. The effect of this error on the terminal variables is
B(#)6V.. The time of the correction should be chosen to
satisfy the following conditions:

1) The uncertainty caused by the tracking data should
be small compared to the indicated error, i.e., the square
roots of the diagonal terms of ®ap(fs,0) (AoT4o + Ao™)
®ap(ty, t) should be small compared to Abgo + Abrz(t).

2) The miss caused by errors in performing the correction
should be no greater than the same order of magnitude as the
tracking uncertainty. [The square roots of the diagonal
terms of B()E[8V .8V .r1B7(t) should be of the same order
as the corresponding terms of @ap(ts, t) (AoT4e + Apo™)
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Pap7(t;, £).] This condition is necessary, since it is pos-
sible that the correction errors caused by orientation errors
can increase with time because the velocity required to null
the indicated error usually increases with time.

Suppose that a time for the first correction has been chosen
such that the two constraints just mentioned have been
satisfied. The trajectory must be re-established after the
correction so that another correction can be made (if neces-
sary). The new a priori matrix of the uncertainty in the
state of the spacecraft is computed from

Apo, = (AoTA¢ + Apo™H? +|:"-Q"f'"q"] ®
0 iAsv,

where, from (7),

Aoy, = BV, 57,7)

_ <aAm>(aAm RN IVAVEI VA
20, J\ 08, ) 7 déy, J\ 20,

0-0112 + (AVH)(AVM)T[UIMZ + Ukbz

1
] ©

From tracking data obtained after the correction, the esti-
mated perturbation from the “nominal” state (i.e., the best
estimate of the state before the correction modified by adding
the components of a perfect velocity correction to the ve-
locity components of the precorrection state) is computed
from

AX = (4,74 + Apo, D) X

{Almgl + (A4 + Aso™) ™" AXrn, + Aavh[ﬁ:;]}
it

In this equation, A, is a matrix of regression coefficients
computed about the best estimate of the state after the cor-
rection. Therefore

AX rr, = best estimate of perturbation from best tracking
estimate

0

Il

8V, = best estimate of error in correction
=0
and the covariance matrix of AX is
E[AXAX?] = (4,745 + Apo, ™) (11)

The problem now remains to choose the time of the second
correction. As an aid to deciding when the second correc-
tion should be made, the covariance matrix of miss which
would result after a correction can be computed by trans-
forming Asv, and E [AXAX7] to a covariance matrix of miss
in the impact parameter plane. The second correction should
be made when the miss caused by making the correction
(which is composed of correction error and tracking error) is
small compared to the indicated error and small enough to
insure a sufficiently high probability of success. Or, in more
precise terms, making the correction should increase the
probability of success.

After the second correction, the a priori uncertainty in the
state vector of the spacecraft is

Apo, = (A1)7TAy + Ao, ™) +|:“'Q“'E“'(‘)I;‘j| (12)

and the least squares estimate of the change in the state as
determined by additional tracking data is

AX = (A:7A: + Apo,™Y) 7! AT A (13)
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Table 1 Trajectory characteristics

Launch azimuth = 91° from Cape Canaveral
100-naut mile parking orbit, circular

Injection latitude —0.322°( . .
Injection longitude 1.058° % in Gulf of Guinea.
Velocity at injection 35970.02 fps

Pericynthion altitude 70.0 naut miles

Time to pericynthion 73.4 hr

I T

B. Technique of Choosing Correction Times
for Monte Carlo Simulation

For the purpose of the fuel and error analysis, fixed cor-
rection times will be chosen, and all the indicated error will be
removed. Although this is not an optimum logic (nor the
logic that would be used during an actual flight), it is con-
venient from the standpoint of facilitating the design of a
preliminary Monte Carlo simulation and will give conserva-
tive fuel and accuracy estimates. This is true, since a con-
strained logic must use at least as much fuel and be no more
accurate than an unconstrained logic. Holding the correc-
tion times fixed allows matrices that do not vary with time to
be used as inputs to the Monte Carlo simulation; hence the
machine time necessary to perform the analysis with a high
degree of confidence is reasonable.

The procedure that actually was used to obtain the nu-
merical results that are presented in this paper will be de-
scribed. To be specific, considerable detail will be shown for
an earth-to-moon flight, but the procedure is similar for moon-
to-earth trajectories. The important parameters of the
earth-to-moon trajectory that was used as a nominal are
shown in Table 1. The assumed covariance matrix of injec-
tion errors is shown in Table 2.7

The first step in the procedure involves transforming the
injection covariance matrix to impact-parameter plane errors,
The equation for this transformation is

Table 2
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Aspso = Pan(ty, L) ApoPar™(ts, 1) (14)
where ®,5 (&5, t) is defined in Table 3, and Ao is specified
in Table 2. The numerical result of (14) is shown in Table
4. After 12 hr of tracking, the uncertainty in the impact-
parameter plane coordinates is shown in Table 5. Upon
comparing the corresponding diagonal terms of the matrices.
of Tables 4 and 5, it is seen that 12 hr from injection is a rea~
sonable time to choose as the fixed time of correction, since:
the standard deviations of the burnout errors are about 10 to.
100 times the tracking errors, depending on which terminal
coordinate is being compared.

Next, it is necessary to determine the accuracy of the cor-
rection. 1If B(t) is a 3 X 3 matrix relating the components:
of a velocity correction to changes in impact-parameter-plane
coordinates at the time of the first correction, the velocity re-
quired can be expressed as

AV, = —B7'(t) [Abso + Abre(t)] (15)
and the covariance matrix of AV, is
Asve = B7() [Aavso + Aabrr, J[BT'E)]T (16)

Numerical values for Aapgo, Asprr, B(h), and Ay, are
shown in Tables 4-7, respectively. The normalized eigen-
vectors and the square roots of the corresponding eigenvalues
were computed by the 7090, and the result is-

oz = 34.7 fps & = (0.8834, —0.3836, —0.2691)

op = 4.7 fps & = (0.4599, 0.6001, 0.6544)

1.5 fps g (—0.8954, —0.7019, 0.7065)

Gz =

o
It

From these results, it can be seen that the direction of &
is “preferred,” since its eigenvalue is more than 50 times the
next largest eigenvalue.

Covariance matrix of earth burnout errors®

(0.400250E04)*  —0.294600E05 —0.661500E02

0.657100E01 —0.445100E02 0.275000E02

—0.194800E-01
—0.108200E-04
(0.161586E-01)?

0.132000E-00
0.732800E-04
—0.115600E-03

—0.815500E-01
—0.452700£-04
—0.745500E-04

—0.830902 (0.885833E01)2 0.126400E00
—0.799058 0.689882 (0.206833E-01)2
0.101601 —0.136092 —0.032375
—0.568828 0.762214 0.181226
0.435151 —0.583057 —0.138621
o’ Oro org
Pro a? a8
prB 3 32
Pra Pvd P34
bra Pro Pl
Prd Pos P38

—0.365939 (0.195499E-01) —0.128900E-03
—0.292202 —0.417586 (0.157892E-01)2
OrA Ora ard

Tva Ora o8

OBA oRa 85

g4? TAa TAS

PAa % Tl

pAs  Pad o2

@ All units are in feet, degrees, and feet per second.

Table 3 Matrix transforming injection errors to impact parameter plane errors ®as(ty, to)?

—0.7670000£06
0.2055000£06
0.7990000£01

—0.3052700£08
0.1115900£08
—0.8030000£02

0.6970000£02

[—0 . 655600003
0.6860000E-02

oby b, b
or ov o8
b, dbe Obs
or v o8
OV oV o 3V e
ar o o8

—0.9260000E£06
—0.2991000E07
0.3000000E£00

0.1059000E£07
—0.2233100E08
0.1810000E£02

—0.6232000E07

—0. 1673700E08:|
—0.3520000E02

ob; ob: oby
o4 da 08
b by 0b2
04 O« e}
oV o oV V.,
0A fe)] a3

¢ All units are in feet, degrees, and feet per second.

# In Table 2 and the following tables presenting covariance matrices, it was decided that, since the matrices are symmetric, the
lower triangle would be used to indicate the correlation coefficients of their corresponding elements.
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Table 4 Covariance matrix of uncorrected impact parameter plane error Aapz,

(0.504477EQ7 )2

[

—0.736116E13

—0.249422E09

—0.955921 (0.152645E07 )2 0.700632E08 jl
—0.987421 0.916676 (0.500716E02)?
ob? Chiby OB Ve |
Pbiby ob,* abngJ
Pb1V PbV o OV

The difficulty in determining the accuracy of the correction
lies in the non-Gaussian statistics of the error in the correc-
tion, as can be seen from (7), which is repeated here:

5I7t1 = (aI7t1/6051)60t1 + (DV51/a¢t1)6¢h +
kaAVy + k(AV /[ AV L) (17)
Note that this expression involves products of random
variables. To circumvent this difficulty, a “typical” ve-
locity correction vector is defined as
AV, = (2078 = (62, —27, —18.7) = (Ady, Agn, Az)  (18)

where it should be noted that approximately 959, of the
velocity corrections called for will have a magnitude less
than that given by the formentioned vector. From Appendix
B [Egs. (B8-B10)], the error in the correction can be ex-
pressed as

|:—Aj51Aél [(Azy)? + (Ayg?]-l”}
56, +

5T7z1 = | —Ap Az [(A2)? + (Ag)2] Ve

[(Ad)? + (Agy)?]—12

— Ayl
Az qu,x 4k,
0

or in numeriecal form

17 27
—7.5 |86, + | 62 | 6+
67.5 0

62 ~ 0.883
=27 ke +| —0.384 |k (20)
—18.7 —0.2691

where the “typical” veloeity correction vector has been used
to estimate AV,. After taking E(8V, 8V,7) and using the
following standard deviations:** os5, = 0.01 rad, o5, =
0.01 rad, ai, = 0.35 X 1074 and oy, = 0.01 fps, the result is

E@V 8V, =

Ay
Ay

jl + ker  (19)
A%

BVzl =

(0.319374)* 0.155000 0.115000
0.777140 (0.624500)> —0.050600 =
. 0.533817 —0.120119 (0.674537)*

.2 L. ..

Oz, Oxiyn O
L. . a .,

Priyr O Oinz 20
. . .2

Pxizy  Pinsy O

The covariance matrix of (21), which gives a reasonable
estimate of the accuracy in performing the correction, was
added to the precorrection tracking errors as shown in (8) to
obtain an a priori covariance matrix of the total error in the
state vector. To aid in choosing the time of the second
correction, the resultant covariance matrix of miss is esti-
mated. This estimation is computed from

B)E(8V ., 6V, 7)BT(t) + Anbrr,

** These accuracy numbers were used to obtain all the results
presented in this paper.

Table 5 Covariance matrix of tracking error 12 hr after
injection (AAbrg,)®

(0.464758E05)? -0.976000£09 0
—0.213148 (0.985241E05)2 0
0 0 (2)?

Obibe
Obo?
Pha Ve

ob’ T Ve
Pbibe ThrVes
PBL Ve o Ve?

@ All units are in feet, degrees, and feet per second.

Table 6 Matrix relating velocity components of the cor-
rection to impact parameter plane coordinates

—0.2173600£06
0.7771000£05
0.1312000E01

—0.1332300E06
—0.5163000E05
—0.5040000E00

0.1790200£06

0.1006000E05
—0.3450000E00

o dbh by
oy A 04
Buy=| 22 2 O
ok by1 0%

oV, oV, oV
oxy byl oz

Table 7 Covariance matrix of first correction velocity
vector

(0.306820E£02)* —0.400567E£03
(0.136266E£02)?

l:— 0.958084
(0.976134
4.2 Ox13,
P&héj: Ty1%,
T o’

—0.920681
which is the sum of the covariance matrices of miss caused
by the correction errors and by the tracking errors. The
quantity B(t)E(63y 8V.,7)BT(t) is evaluated using (21)
and the matrix of Table 6, and the result is

BH)E(OV .8V, ")B7(h) =
2.04 X 10 —0.124 X 10 —0.0652 X 10°
0.03468 X 10° | (22)
0.00211

symmetric 1.912 X 10%
Therefore, using (22) and the matrix of Table 5, the
mated covariance matrix of miss after the correction is

% by OhVe
Pbibe Gb22 ThsV =
Pb1V o

—0.278939E03
0.131345E03
(0.987452E01)?

[N
.2

Ty

Tyis1

esti-

PV OVl

(0.150333E-06)2 — 0.222000E-10 — 0.652000E-04
—0.870167E-01 (0.169706E-06)2 (0.346800E-04 | (23)
—0.433704E-01 0.204354E-01 (1H)®

The problem now remains to choose the time of the second
correction. This time is chosen by a procedure similar to that
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used to determine the time of the first correction. The co-
variance matrix of transformed ‘burnout” errors is given in
(23), and the matrix of (21) when added to the precorrection
tracking errors [as in (8)] gives the covariance matrix of the
uncertainty of the state vector of the spacecraft. The co-
variance matrix of tracking errors after 36 hr of tracking
from the first mideourse correction (12-hr correction) is

Ublz T b1be S Obi Ve
Pbibe 05t Ob:Veo | =

PhiVe PhiVe OVo:

—0.171542 (0.237276E-05) 0
0 0 12

Upon comparing (23) and (24), it is seen that 48 hr from in-
jection is a reasonable time to use as the “fixed time” of the
second correction, since the standard deviation of the impact
parameter errors caused by performing the first correction is
more than three times the corresponding tracking errors. The
V. errors are comparable but are so small that they are both
negligible.

(0.420119E-05)2 —0.171000E-09 0
(24)

C. Details of the Monte Carlo Simulation

In this section, the details of the two-correction Monte
Carlo simulation are described. A random vector genera-
tion program generates samples of the transformed burnout
errors, the tracking errors in the two corrections, the orienta-
tion errors in the two corrections, the accelerometer error,
and the thrust shutdown uncertainty. The computer deter-

1.0

0.9 //

0.8
= /
zN 0.7 /
a 06
.>_: 05 Fig. 3 Cumaulative
5 / probability of veloc-
@ 04 ity required in sec-
g ond correction
g 03
: /

0.2

0.l

o]
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mines the velocity correction vector to null the indicated
error from

_ _ Ay
V:l = —B_l(tl) [AbBo -+ Abrr (tl)] = [ Ay1 (25)
A%
where ¥, = AV,
The error remaining after the {irst correction is

[ (9b0): } ] 7,
beg =] (Bbohr | = B(t1)|:k,,Vz1 + ks +

Vo [ V]
oV oV, _
" 80, + o 5¢1] Abzz(t) (26)

At the time of the second correction, the indicated error is
8& + Abrg(t); hence the second velocity correction vector is
computed from

_ Ads
Vi = —B7t) [0a + Abre(t)] = | Age 27
Az,
Where I_/tz = AI—/tg-
Asin (26), the error after the second correction is

(6b1)2 _ - V.
06 = | (6bo)e | = B(t2)|:kth2 + k&, i—vﬁ +
8V )2 B

V., oV,
a6, 2t 5,

The bracketed expressions in (26) and (28) are identical in
form to (19), but in the case of (28) the subscript 2 replaces
the subseript 1.

The cumulative probability distribution functions that are
presented in Part D of this section were obtained by making
2000 Monte Carlo runs. The computer time necessary to
make 2000 runs is now about 1 min.

5¢2:| — Abre(l) (28)

1.0 7
/]
Iy
08 ,'/‘
= 1/ }8i| = ERROR
o [/ AFTER FIRST
0.6
: CORRECTION
r Fig. 5 Cumulative
3 probability of in-
m 04 clination error
2 /
8
&, / )| ™85 = ERROR
’ " AFTER SECOND
/ I CORRECTION
Vi ] ) ] ]

0
-1.0 0 1.0 2.0

INCLINATION ERROR (DEGREES)
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Some improvements have been made in the simulation since
the results presented in this paper were obtained. These
improvements now will be described. Instead of determining
P{r; < R}, where r; is any one of the random variables of
interest, the simulation now determines P{|r;| < |R.|}, since
the distribution of the magnitude of the random variables is
of more interest than the distribution of the random variable.
The discrete point P{|r;| < |Ry|} = 0.68 is determined for
each of the variables being corrected and the velocity mag-
nitude. This point can be considered as an “equivalent one-
sigma’’ point, since P{|r:] < |lo|} = 0.68 for a Gaussian
random variable. Also computed and printed out is the
experimental covariance matrix of

[(Bbl)u (5b2)17 (avm)xl' [(Bbl)zy (51)2)2; (va)z]y
I T_/tll’! V"z]!l V‘xl + ! 17‘21: 5V12

Of course this covariance matrix does not define the joint
probability density function of the random variables since
they are non-Gaussian. However, this matrix is useful
when it is expedient to make a Gaussian approximation.
For example, a problem of interest is to determine how ac-
curately the trajectory can be re-established after the mid-
course guidance phase. To solve this problem, an a priori
covariance matrix of the uncertainty in the state vector of
the spacecraft after the last correction is necessary. The
matrix sum of the covariance matrix of tracking errors before
the last correction and the experimental covariance matrix
of 8V, furnishes an excellent approximation to the desired
a priori matrix. The Gaussian probability density function
defined by the approximate a priori matrix should be a good
approximation to the actual density function, since the track-
ing errors are Gaussian (at least, they are assumed to be
Gaussian) and the components of 8V, have no odd-order
statistical moments.

It is important to note that this simulation is based on
linear theory. Some preliminary work has been performed
concerning the analysis of the midcourse guidance phase of
missions in which severe nonlinearities are present and is
presented in See. I11.

D. Results of the Monte Carlo Simulation

The data necessary to simulate the mideourse guidance
phase of this mission already have been presented. The
cumulative probability distributions that were obtained are
shown in Figs. 2-6 and are based on 2000 runs. Since the
simulation used impact-parameter plane variables, it was
desirable to convert these variables to pericythion error and
inclination error. Approximate conversion factors are

6P = 0.70 6b, = pericythion error
&t = [57.3/(15 X 108)]6by = inclination errcr

1.0
/
i
8 I/
> — I—
© 1/
o 06 1
Fig. 6 Cumulative | FSV(DI_ERROR
probability of the 3 I‘ AFTER FIRST
hyperbolic excess ve- @ 0.4 /’ CORRECTION
locity error o !
x /JP\BVOOZ = ERROR
0.2 l' AFTER SECOND
/ 7 CORRECTION
| | ! ]
° -4 0] 4 8
HYPERBOLIC EXCESS VELOCITY
ERROR (FPS)
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Table 8 ¢‘‘Equivalent’ one-sigma accuracies and mid-
course velocity requirements for an earth-to-moon flight

Vi = 38.5 fps
Vs = 2.7 fps
Vi+ Vy = 39.5 fps
8Py = 50,000 ft
L = 0.5 deg
&V = 2.3 fps
8P, = 34,000 ft
;2 = (.11 deg
6V w2 = 11ps

The “equivalent” lo accuracies and fuel requirements are
shown in Table 8.

III. Simulation of Missions
in Which Nonlinearities Are Present

In this section, a proposed Monte Carlo simulation is
described which can be used to determine the fuel require-
ments and final accuracy of the midcourse guidance phase
of missions in which nonlinearities are present. Such non-
linearities may arise from several possible sources. For
initial missions of a spacecraft returning from the moon, the
major contribution to the nonlinearity will be due to the
guidance system. It is logical to assume that, for initial
missions, sophistication of the guidance system will be re-
stricted due to weight limitations. Thus, the larger ex-
pected burnout errors will involve second-order variations
of the terminal parameters. Additional contributions to this
error will be made by the uncertainty in the mass and shape
of the moon.

Concerning the terminal parameters, it is reasonable to
expect that the latitude and longitude at the re-entry point
and the re-entry angle will be important. Satisfaction of
certain values of these conditions will be necessary if the
vehicle is to survive aud land at a designated point on the
earth. These parameters, however, in part because of the
sphericity of the earth, do not vary linearly with respect to
the lunar burnout and midcourse variables for the guidance
system expected to be used in initial missions. Furthermore,
no suitable representation of these terminal parameters has
been found, such as the impact parameter plane discussed and
used in Sec. I, which will linearize the problem.

The following discussion illustrates a scheme that may be
used for a Monte Carlo simulation of a one-correction moon-
to-earth flight when either two or three terminal variables
are to be controlled.

A. Basic System for the Fuel and Error Analysis

The basic system that will be used to simulate the mission
is shown in Fig. 7. A Gaussian-random-vector generation
program produces a sample of the burnout errors, the tracking
errors, and the midcourse correction errors when the covari-
ance matrix of these errors is specified. The trajectory
program computes the actual conditions that would occur at
mideourse and then adds the tracking errors to compute the
apparent conditions at midcourse. The optimmum velocity
correction scheme computes the direction and magnitude of
the minimum velocity correction on the basis of the apparent
conditions. Since the errors in the midcourse correction
generally depend on the direction and magnitude of the
velocity correction, 6(AV) cannot be computed until AV
has been decided upon. After 8(AV) has been computed,
the actual conditions before the midcourse maneuver, AV and
8(AT), are added to obtain the resultant position and ve-
locity coordinates. The trajectory program then computes
values for the controlled end conditions and compares them
with the desired end conditions and, on the basis of the speci-
fied tolerances, decides whether or not a success or failure
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Fig. 7 Basic system for the simulation of the moon-to-
earth mission

has occurred.ft The amount of fuel used in midcourse is
stored in the machine for the future computation of points
on the cumulative distribution function of required fuel.

B. Technique Used for the Trajectory Computation

If the Monte Carlo technique discussed here is to produce
results that have a high degree of confidence, many trajectory
simulations are required. This presupposes a - very-high-
speed trajectory calculation procedure that is available only
if it is based on an analytic or two-body model. One such
model concerning lunar trajectories which is adaptable to this
problem first was discussed in a paper by Egorov? in 1956.
For this model, Egorov assumes that the moon is enclosed
in a sphere called the ‘“sphere of action” within which only
the influence of the moon is considered. Outside of this
sphere, the earth is considered to be the sole attracting body.
The radius of this sphere, which is calculated to be about
30,000 naut miles, was assumed by Egorov to be that distance
at which the perturbing force due to the earth when the moon
is considered the central body is equal to the perturbing force
due to the moon when the earth is considered the central
body.

Space Technology Laboratories has extended Egorov’s
assuniptions to include three-dimensional lunar trajectories
and has written a program that will search for moon-to-earth
trajectories satisfying certain end conditions.” These condi-
tions are the total time of flight, the impact latitude, longi-
tude, and flight-path angle, and the selenographic latitude
and longitude of the launch site. The program solves for the
trajectory by an iteration process that attempts to match the
moon phase and earth phase conics at the interface or sphere
of action. The resulting launch time, burnout position, and
velocity then can be supplied directly into the midcourse
guidance simulation program, which must, of necessity, con-
tain the same two-body equations. This describes the anal-

1t Cumulative probability functions also could be determined.
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ytic model upon which the midcourse analysis will be based
and a method by which nominal trajectories may be gener-
ated.

Once a nominal trajectory has been found, the mideourse
guidance simulation program will add the burnout errors
to the nominal initial conditions and then calculate the mid-
course position and velocity coordinates at the desired point
along the trajectory. It can do this in the following manner:

1) The six selenographic position and velocity coordinates
are transformed to the selenographic Cartesian system. Polar
coordinates are inputs to the program, since this is the form
in which the burnout errors will be introduced.

2) The selenographic Cartesian coordinates then are trans-
formed to the equatorial system by means of three Euler
angles that describe the librations of the moon. The instan-
taneous transformation used is determined by the time of
launch, which is obtained from the forementioned search
program.

3) The equatorial position and velocity vectors then are
used to determine the conic elements of the moon phase
trajectory. Also, the transformation from in-plane to the
equatorial system is found.

4) With this transformation, it is possible to determine
the trajectory position and velocity vectors at the moon-
earth transfer point. Calculating the time that the vehicle
passes through this point, it is possible to obtain the position
and velocity of the moon at this time and hence to determine
the position and velocity of the vehicle with respect to the
earth.

5) These will be the initial conditions of the earth phase
conic from which, as in point 3, the conic elements and the
in-plane to equatorial transformation may be found.

6) Specifying the distance from the earth at which the
velocity correction is to be made, the midcourse conditions
may be calculated.

At this point the actual midcourse conditions have been
found. To these position and velocity vectors are added
the tracking errors that are obtainable from the Gaussian
random vector generation program. The resulting vehicle
position and velocity represent the apparent midecourse condi-
tions that are used to compute the optimum midcourse cor-
rection velocity. This correction velocity and the midcourse
errors then are added to the actual initial midcourse velocity,
and the resulting velocity together with the actual position
are used to calculate the vehicle terminal conditions.

The calculation of the trajectory from mideourse to
termination will involve essentially the same procedure dis-
cussed in paragraphs 5 and 6. That is, the actual position
and velocity vectors are used to calculate the midceourse to
termination conic elements and the in-plane to equatorial
transformation. These, in turn, may be used to find perigee,
impact latitude and longitude, re-entry flight path angle,
or whatever the desired set of terminal parameters happen
to be for the problem considered. Success or failure in meet-
ing prespecified values of these parameters then can be
determined.

C. Computation of the Velocity Correction

1. Latitude and longitude control

Before going into the details of the scheme proposed in this
paper for determining the optimum velocity correction, a
short digression into the geometrical aspect of the problem will
be presented. The perturbations in latitude and longitude
of the spacecraft at impact caused by the midcourse cor-
rection can be expressed symbolically as

A, = f(Ad,Ag,A%) (29)
Avone = g(AZ, Ay, AZ) (30)

“where (Az,Ay,Az) is the mideourse correction vector repre-

sented in earth-centered, inertial coordinates.
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Normally the surfaces in (A%, Ay, Az) space represented by
(29) and (30) intersect in a curve. The coordinates of any
point on the curve represent the components of a correction
vector that will null the indicated errors in latitude and
longitude. The problem is to find the coordinates of the
point on the curve which is closest to the origin. The special
case that is obtained when f and ¢ are linear functions is de-
rived in Appendix C.

When the nonlinear, moon-to-earth midcourse correction
problem is considered, explicit expressions relating Ay, and
Ajomg to the components of the correction cannot be deter-
mined. Since explicit expressions cannot be found, the ap-
proach used will be to determine many of the possible solu-
tions and to use a convergence routine to find the optimum
solution. (Linear theory could be used for a first trial.)

The method of computing the optimum velocity correction
now will be explained. The apparent position and velocity
of the spacecraft at midcourse as seen by an earth-based
observer are computed from the known nominal trajectory
and the error sample that was generated by the random
vector generation program. A time of flight (¢;) is chosen,
and the computer determines the position vector of the target
t; hours after midcourse. The time of flight is related to the
semimajor axis by Lambert’s theorem.? That is,

iy = (a¥2/ V)N — sinN — (N; — sinNy)] (31)

where
B N Y L2 I L1 2T 24 M
sm—2~N = 2]: P (32)
and
L 1wl + (7] —|fM—7f[:‘l'2
smENl = 2[ a (33)
Since
\7al + 17/ =~ |70 — 7] (34)
then
N, — sinN, ~ 0 (35)

and {; can be expressed as

4~ (@Y ut?)[N — sinN] =
F(lrul + 7] + 7w — 71,0 (36)

The function F of (36) could be stored in the computer in
the form of tables. An interpolation routine then could
be used to obtain the semimajor axis after t; is specified and
|72e| + |7¢) + |7m ~— 7] is computed.

After the semimajor axis has been computed, the desired
velocity is determined from

Vi = [u/ra) — (u/a)]? (37
and then the desired flight path angle is specified by

By = %tan—l[w] N

Sin\b,-

L. [/ sin®(§,/2) — [(ru/rs) — cosyy]
S e el IR
where

Ay = TMVMZ/M (39)
and

11 The machine will have to determine the proper quadrant
of Bar.
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Equation (37) relates the kinetic and potential energy of the
orbit, whereas (38) is derived by solving?*

ry 1 —cosyy | sin(Bu — ¢))
r; Ay sin%By + singu (1)

for Bu.

Since the veloeity vector must be in the plane of 7; and
7ar, (37) and (38) completely specify a velocity vector that
will insure that the spacecraft re-enters at the desired latitude
and longitude. This velocity is given by

5 sinfBy (AN _ sinBu Fu
Vor = VM[sinwf <rf> (“Osﬁ”’ tan¢f><mﬂ
(42)

By subtracting the initial midcourse velocity vector from
Vi, the correction velocity vector AV can be determined.
By using the procedure just described, a curve of [AV]| vs
t; can be computed, and the minimum velocity increment
can be determined from that curve. (Actually, a con-
vergence routine would be used to find the optimum solu-
tion.) Therefore the output of this stage of the simulation
will be the desired direction of the spacecraft body axis and
the magnitude of the velocity correction.

If hyperbolic approach trajectories are used, the only
modifications to the foregoing discussion occur in (31-37).
The modified equations are obtained by replacing Eqs. (36)
and (37) by

t; = (a¥%/ pt'?) [ sinhN — N| (36a)
and
v = [2u/r) + (u/a)]V? (87a)

2. Latitude, longitude, and re-entry flight-path angle
control

Since three re-entry variables are being controlled and there
are only three degrees of freedom in the performance of the
midcourse correction (it is assumed that the correction is
applied at a fixed distance from the earth), there is assumed§§
to be only one possible velocity correction vector. The
problem considered here is to determine that vector.

The method of computing the direction and magnitude of
the midcourse velocity inerement now will be explained. A
trial value for the time of flight is selected, and the position
vector of the target ¢; hours after midcourse is determined.
Equation (36) is used to compute the semimajor axis of the
trial orbit, the velocity is found from (37) and B is deter-
mined by (38-40). From conservation of angular momen-
tum and conservation of energy, the re-entry flight-path
angle can be computed. If the computed flight-path angle
is not equal to the desired value, another time of flight is
chosen. An iteration technique would be used to con-
verge on the correct time of flight. Therefore, the output of
this option of the simulation is the correction vector AV.

D. Estimmation of Computing Time to Perform
Simulation

In estimating the running time of the simulation, it is
possible to break down the machine ecalculations into the
following three categories: 1) trajectory determination,
2) optimum velocity correction determination, and 3) Gaus-
sian-random-vector generation.

These represent the major computation groups. The
time required for other machine operations and calculations,
such as reading the ephemeris tape (once per set of runs),
computation of mideourse performance errors, and evaluation
of fuel requirements and mission success, will be minor com-

§§ It is possible that there will be more than one solution.
In this case, the computer will choose the solution that has its
time of flight closest to nominal.
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pared to these. The machine time estimate for the first and
second groups is based on an actual count of operations re-
quired in the computation.

The first, or trajectory determination group, represents
the calculations required to go from lunar burnout to mid-
course plus those required after the midcourse correction to
impact. These calculations consist of about 75 major opera-
tions, i.e., those requiring subroutines such as sines, square
roots, ete., and 400 minor operations, such as multiplication
and addition. In this case, the minor operations will con-
sume only about 5%, of the time that the major operations
will take. The 7090 machine time required to calculate this
group amounts to about 0.20 sec/trajectory.

The operation time for the second group or the optimum
velocity correction determination also can be determined by
an operation count. This estimation, however, will be less
precise because the calculation requires two iteration proc-
esses. First, an iteration is required to solve Lambert’s
implicit expression. This will require 0.0065 sec/loop, or,
if approximately 12 loops are required per solution, then the
time will be about 0.08 sec. Once Lambert’s expression has
been solved, about an additional 0.02 sec will be necessary to
find a mideourse correction velocity computation. Second,
since the velocity correction just calculated is very likely not
optimum, additional velocity correction calculations will
have to be made and the optimum chosen from this set. If
it is estimated that a set of eight velocity calculations is re-
quired, then a total of 0.80 sec will be consumed by this group.

The method by which the computing time for the third
group has been found is essentially empirical, that is, by
actually running the random vector generation program on the
7090 and estimating the running time. For latitude and
longitude control and a single midcourse correction, it will
be necessary to generate 16 random variables. The estimate
of the running time in this case amounts to 0.12 sec/run.

Estimation of the total computing time based on the fore-
going amounts to about 1.2 sec/run, where 0.08 sec has been
allowed for minor machine operations. It is clear from the
foregoing that the majority of the machine time is consumed
in the calculation of the optimum velocity correction, i.e.,
about two thirds of the total time. There are three possible
alternative methods that may be used to reduce this running
time. First, it may be possible to find an analytic solution
or approximation to the optimum midcourse velocity require-
ment. A second method would be to find rapidly converging
series for some of the calculations performed now. This
would replace the relatively slow routines that presently
must be used. A final possibility would be to solve Lam-
bert’s expression by means of a precalculated table. This
table would be a function of two independent variables and
would require a double interpolation scheme. It is felt that
this would be the best approach to decreasing the simulation
running time.

IV. Discussion of Statistical Aspects
of Monte Carlo Technique' !

In analyzing the data obtained from the simulation, the
computer can determine cummulative probability curves (or
surfaces) or calculate the experimental probability of success.
When a probability of success computation is desired, the
machine decides, on the basis of a specified criterion, whether
or not a success has occurred by inspecting the final values
of the controlled variables. After completing a required
number of runs, the machine counts the number of successes
obtained and divides by the number of runs. The number
obtained is the estimated probability of success. How
meaningful the estimation is will be discussed now.

Il For a more thorough discussion of the statistics of the
Monte Carlo Technique, see Ref. 5.
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Since the simulation is estimating a binomial event (success
or failure), P, (estimated probability of success) is asympto-
tically Gaussian, probability statements about Py are rela-
tively easy to make. A meaningful statement to make
about P, is

P{|Py — P) <d} =« (43)

(In words, there is a 100a9, probability that the absolute
value of the difference between the true and estimated
probability of success will be less than d.) From Ref. 5,
the number of runs necessary to obtain this degree of confi-
dence is” #

n = Py(1 — Py)(Za2/d%) (44)
where
1 Zo .
Since Po(1 — Py} < 1, (44) can be expressed as
n < Zn%/4d? (46)

Therefore, by making 1000 runs, the probability of success
can be estimated within 3%, with more than 959, confidence
in the result. (Note that the substitution Py(1 — Ps) = L
is very pessimistic when Py = 0.9.)

When a complete cumulative distribution function (c.d.f.)
is desired, the number of computer runs necessary to get a
desired degree of confidence becomes very large. For ex-
ample, suppose it is required to estimate the c.d.f. of the mid-
course velocity increment. To estimate this c.d.f. within
+39%, (d = 0.03) with a 959, confidence would take about
2500 runs.® If only a point on the curve which corresponds
to a probability of approximately 0.9 is being estimated,
about 400 runs are required to obtain the same degree of
confidence.

An important characteristic of the Monte Carlo method
as applied to this type of simulation is that the number of
runs for a given level of confidence is independent of the
complexity of the simulation (i.e., the number of midcourse
corrections, number of error sources considered, ete.). The
penalty paid for complexity is the machine time per run.

Appendix A: Probability-of-Success Integral
for an Attitude-Controlled Spacecraft

Let AX represent the errors in the controlled terminal
variables, and let B be a 3 X 3 matrix that transforms the

midcourse velocity correction vector into changes in X.
Therefore AX = BAV, and

5(AX) = BQAV/26)50 + BQAT/08)5¢ + i
BS(AV) + 6% et

where 86 and 8¢ are the body axis orientation errors.*** It
is assumed that 6(AV) can be expressed

S(AV) = k AV + E(AV/| AV])
and hence

§(AX) = B(OAV/26)30 + BOAV/0¢1)d¢ +
(kB + (Ieo/ AV)]AV + 8X ireek

where 86, 8¢, ki, and %, are independent Gaussian random
variables.

# # Equations (44) and (45) are based on the fact that Py is
approximately Gaussian with mean = P, and variance = [Pe(1 —
Py)l/n. _

#¥% Soe Fig. 8 and Eqgs. (B8-B10) for (d0AT/20)86 + (dAV/
dp )8,
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1f 8 is the volume of success in AX space, the probability
of success is

PE) = [y LS, pax 1A AT Yz o dis | X
pav (AV)dVydV, dVs

- Ln AX P(S| AV) pav (AV)AV, dV, dVs

Since pax[8(AX)|AV] and pa,(AV) are both trivariate
Gaussian density functions, P(S) involves a six-dimensional
integration.

Appendix B: Computation of Errors
in the Performance of the Midcourse Correction

After the mideourse correction vector has been determined,
the errors that result from the imperfect performance of the
correction can be computed. The errors in the correction
are usually of two types: angular position errors caused by
reorienting the body axis and velocity magnitude errors.
The angular position errors are dependent on the amount of
maneuvering, and the velocity error is a function of the magni-
tude of the correction.

An error analysis of the mideourse correction now will be
performed. From Fig. 8, the components of the velocity
correction are

A = AV cosf coso (B1)
Ay = AV cosf sing (B2)
Az = AV sinf (B3)

After taking variation in (B1-B3),
0(Az) = Az[8(AV)/AV] — Az cos¢ 680 — Ay b¢ (B4)
8(Ay) = Ay[8(AV)/AV] — Aésing 60 + Az d¢ (B5)
8(Az) = Az[6(AV)/AV] 4+ AV cosb 86 (B6)

In the simulation, it will be assumed that 8(] AV]) can be
expressed as

il

S(|ATV]) = k| AV| + ks (B7)

and that the 66 and d¢ are independent of the maneuvering.
The trigonometric functions of (B4-B6) can be expressed in
terms of the velocity components, and the result is

RO ke AL (Az) 66 as
8(AZ) = Az [ka + A*V] Az (a0 + (Aj7 Ay d¢p
(B8)
N ky , (Ay) o6
oa) = 4y [k + |AV1J ~ AV laa + e T

(Az) 6¢  (B9)

5(A%) = As l:k + ITA]C%T] + [(A2)* + (Ap)2)V280  (B10)
It is assumed that 66, 8¢, k., and &, are independent Gaussian
random variables.

For the preliminary analysis that this type of simulation
would be required to perform, it is felt that (B4-B6) are rea-
sonably accurate representations of the true situation. They
allow the analyst to consider the effects of the final orientation
accuracy as well as the effects of velocity errors.

Appendix C: Simulation of Missions Where Two
Terminal Variables Are Controlled

It is the purpose of this appendix to show how the equations
presented in Part C of Sec. II should be modified when only
two terminal variables are controlled. If only two terminal
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X

Fig. 8 Orientation of the body axis for the midcourse
correction

variables are controlled, an optimization problem is present
since three degrees of freedom, the three components of
velocity, are available. Let b, and by be the indicated error
in the two terminal variables under control, and then the
equations relating these variables to the correction velocity
are

—b, = (dby/03) A + ©b/oy) Ay + (db/d2) Az (C1)
—by = (Obs/0) At + (Dbo/O9) AY + (db/d2) Az (C2)

or in matrix form

0bi 0b; b Ad
- b ot oy 02 h o -
—b:_[‘]: e B Y
S I A B B
o0 o) o
(C3)

The optimum correction velocity vector is considered to be
that correction vector which satisfies the constraints (C1)
and (C2) and has the minimum AV? = (Az)? + (Ap)? +
(AZ)2. After using the standard Lagrange parameter ap-
proach, the result is

2| ay | = Z—Z‘ aa—';;! (C4)
Az g’l ?Abﬁi M
o0& |
or
24T = (2b/OT)HTX (C5)

where \; and A; are the Lagrange parameters. Multiplying
(C5) by (0b/0V) gives

20/01YAV = —2b = (2b/d1)(@5/dV)TX
or
X = —2[@5TV)b5/1V)TI 1
AV = —(b/dV)7[(2b/dV)(b/dV)T]-1 b  (C6)

The equations that are used in the simulation when only
two terminal variables are controlled are

Vi = —BT(t) [Bt)BT(t) ] [Abso + Abra(t)] (€7

Bél = B(tl) [ku 17‘1 + kb(th/l I711‘) +
@V 4/268)80, + BV ,/3¢)0¢1] — Abre(t) (C8)

Vi = —B7(t) [B(t)B" (%)) [6a + Abra(ts)] (C9)

0é B(t2) [kaVQ + kb( Vlz/l Vm]) +
@V .,/00)80, + (@V.,/0¢2)] — Abra(t) (C10)

[

[
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Appendix D: Comparison of Monte Carlo and
Direct-Integration Techniques

In this appendix, two relatively simple statistical prob-

lems are solved by both the direct-integration approach and

the Monte Carlo technique. The first of these problems
involves determining

Pl(m2 + x2? + 202 < Ry (D1)

where the 2’s are standard, uncorrelated Gaussian variables.
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Fig. 10 Cumulative probability of R = (x:2 4 x22 + x32)V?2

The solution of (D1) can be expressed in terms of tabulated
functions as follows:
1

- (2‘”)3/2 (2124222 +232)1 /2 <Ro
1 RO ™
- 2 o —r2/0
PR [ 7 singe=r/ agar
Ro e~ 72/2 e Ro2/2
=2 {j; (2m)1 dr — Ry [(21r)1/2}} (D2)
A plot of (D2) as a function of R, is shown in Figs. 9-11.
Also plotted on the graphs are the results of a Monte Carlo
simulation.

A problem of interest in the statistical analyses in lunar
satellite trajectories is that of determining

P[—|6P,| < 8P, < 84, < |844,)] (D3)

where 6P, and 04, are the errors in pericynthion and apo-
cynthion. It is shown in Ref. 6 that for a nominal circular
orbit

e—l/2(x12+122+1'32) dl‘l dzs dx;;

oP, = 2 — (222 + xH)V/? (D4)
64, = x + (@2 + 23212 (D5)
where
xlb 2 2(ro/ve) O o070
| =|1 2(@/re) O 8V, (D6)
3 0 0 7o 880

The variables 7y, Vy, and 8 are the nominal selenocentric
radius, velocity, and flight-path angle. A numerical solution
of (D3) was obtained by integrating the trivariate Gaussian
density of (x1, z», z3) over the conical volume described by
(D4) and (D5). The assumed covariance matrix of (3, @2,
x3) is shown in Table 9 for a 600,000-ft-altitude, circular, lunar
parking orbit.

A plot of the results of the numerical integration is shown
in Fig. 12. Also shown is the result of 28,000 Monte Carlo
runs. It can be seen that good agreement is obtained. The
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Table 9 Covariance matix of (x1,%2,x3)

0.305534E-09
(0.165897£-05)?
0.982799

0.999830
0.984508

0.111474E-10
(0.683708E05)?

ozt Txixs Oxri1ns

Pxiz2 ozs” [F 2% 23
2

Prizs Pxoxs Oy

numerical integration took 3.5 min of machine time, whereas
the Monte Carlo runs took 1.25 min.

l:(o. 184202E05)2 0.123989E-10 }

Appendix E: Discussion of Least-Squares
Equation

Fquation (1) is the standard “weighted least-squares esti-
mate” equation. One derivation is as follows. Under the
assumption that perturbations in the state vector at burnout
(i.e., the vector of position and velocity coordinates) are small
enough so that linear perturbation theory is valid, the vari-
ation in observed values (angles, rates, etc.) can be expressed
as

’ = ; — : - '-, r——
Ay‘ Yimeasured Yinominal Z @i Al’

> (ay> Az (ED)

7 \0z;

The estimate of the Az; is chosen to minimize
ot I\ 72
oz n[(55)a- ()]
q ‘ i O: 0
- Z[Za,—jm,- - Ay{|2 (E2)
i L

Carrying out the minimization procedure gives

( o3 > =0 = 222 aylagAr; — Ayzi] (E3)
0Az, [

or
E (l-;kAyi = E E Az aile,-
i i j

In matrix form, (E3) becomes

ATAG = (ATA)Az (E4)
or
Az = (ATA)'ATAjF = least-square estimate (E5)
where
A = (ay) = [(1/0)(Qy:/0x5)]
and

Ag = [(yimeasured - yinominal)/‘n]

If the measured values are uncorrelated, the covariance
matrix of AZ is

E[Az AzT] = (ATA)™* ATEX
[Ag Ag"] A(A7 A)71 = (A7A)™

since Ay; has unit variance and hence E[Aj Aj?T] = I =
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Fig. 12 Cumulative probability of pericynthion-apo-
cynthion error for a lunar parking orbit

identity matrix. When an a priori covariance matrix of
burnout errors is available, the estimated perturbation in the
state vector is determined from

AZ = (ATA + Apo )Y (ATA)[(ATA) AT AY] +
Apo™! AfBo} (EG)

It should be noted that this equation just weights the two
sources of information by their respective inverse covariance
matrices.
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